We introduce PyTorch Geometric, a library for deep learning on irregularly structured input data such as graphs, point clouds and manifolds, built upon PyTorch. In addition to general graph data structures and processing methods, it contains a variety of recently published methods from the domains of relational learning and 3D data processing. PyTorch Geometric achieves high data throughput by leveraging sparse GPU acceleration, by providing dedicated CUDA kernels and by introducing efficient mini-batch handling for input examples of different size. In this work, we present the library in detail and perform a comprehensive comparative study of the implemented methods in homogeneous evaluation scenarios.
翻译:我们引进了PyTorrch Geology,这是一个在PyTorrch的基础上深入学习诸如图表、点云和元件等结构不固定的投入数据的图书馆,除了一般图表数据结构和处理方法外,它还包括最近出版的各种关系学习和3D数据处理领域的方法,PyTorrch Geology通过利用稀疏的GPU加速、提供专门的CUDA内核和对不同尺寸的投入实例采用有效的小型批次处理,实现了高数据吞吐量,我们在这项工作中详细介绍了该图书馆,并对同一评价情景中采用的方法进行了全面的比较研究。