Learning from Demonstration (LfD) is a paradigm that allows robots to learn complex manipulation tasks that can not be easily scripted, but can be demonstrated by a human teacher. One of the challenges of LfD is to enable robots to acquire skills that can be adapted to different scenarios. In this paper, we propose to achieve this by exploiting the variations in the demonstrations to retrieve an adaptive and robust policy, using Gaussian Process (GP) models. Adaptability is enhanced by incorporating task parameters into the model, which encode different specifications within the same task. With our formulation, these parameters can be either real, integer, or categorical. Furthermore, we propose a GP design that exploits the structure of replications, i.e., repeated demonstrations with identical conditions within data. Our method significantly reduces the computational cost of model fitting in complex tasks, where replications are essential to obtain a robust model. We illustrate our approach through several experiments on a handwritten letter demonstration dataset.
翻译:从演示( LfD) 中学习是一个范例,让机器人学习复杂的操作任务,这些操作任务不易脚本,但可以由人类教师来证明。 LfD 的挑战之一是让机器人获得能够适应不同情景的技能。在本文中,我们提议通过利用演示中的各种变化,利用高山进程模型(GP) 获取适应性和稳健的政策,实现这一点。通过将任务参数纳入模型,将不同的规格纳入同一任务中,使适应性得到加强。有了我们的配方,这些参数可以是真实的、整数的,也可以是绝对的。此外,我们提议了一个GP设计,利用复制结构,即数据内条件相同的重复演示。我们的方法大大降低了模型在复杂任务中的计算成本,而复制对于获得一个强健的模型是必不可少的。我们通过手写的信件演示数据集上的若干实验来说明我们的方法。