In this survey, we provide an in-depth investigation of exponential Runge-Kutta methods for the numerical integration of initial-value problems. These methods offer a valuable synthesis between classical Runge-Kutta methods, introduced more than a century ago, and exponential integrators, which date back to the 1960s. This manuscript presents both a historical analysis of the development of these methods up to the present day and several examples aimed at making the topic accessible to a broad audience.


翻译:本综述深入研究了用于初值问题数值积分的指数龙格-库塔方法。这些方法在经典龙格-库塔方法(提出已逾百年)与指数积分器(可追溯至20世纪60年代)之间实现了有价值的融合。本文既呈现了该方法发展至今的历史分析,也提供了若干示例,旨在使广大读者能够理解这一主题。

0
下载
关闭预览

相关内容

DeepSeek模型综述:V1 V2 V3 R1-Zero
专知会员服务
116+阅读 · 2月11日
【论文笔记】基于LSTM的问答对排序
专知
12+阅读 · 2019年9月7日
AAAI 2019 | 基于分层强化学习的关系抽取
PaperWeekly
20+阅读 · 2019年3月27日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
Mask R-CNN 论文笔记
统计学习与视觉计算组
11+阅读 · 2018年3月22日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
【论文笔记】基于LSTM的问答对排序
专知
12+阅读 · 2019年9月7日
AAAI 2019 | 基于分层强化学习的关系抽取
PaperWeekly
20+阅读 · 2019年3月27日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
Mask R-CNN 论文笔记
统计学习与视觉计算组
11+阅读 · 2018年3月22日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员