I develop an algorithm to produce the piecewise quadratic that computes leave-one-out cross-validation for the lasso as a function of its hyperparameter. The algorithm can be used to find exact hyperparameters that optimize leave-one-out cross-validation either globally or locally, and its practicality is demonstrated on real-world data sets. I also show how the algorithm can be modified to compute approximate leave-one-out cross-validation, making it suitable for larger data sets.


翻译:本文提出一种算法,用于生成分段二次函数,该函数将Lasso留一交叉验证计算为其超参数的函数。该算法可用于全局或局部地寻找优化留一交叉验证的精确超参数,并通过实际数据集验证了其实用性。同时,本文展示了如何修改该算法以计算近似留一交叉验证,使其适用于更大规模的数据集。

0
下载
关闭预览

相关内容

【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
22+阅读 · 2023年5月10日
【NeurIPS2022】分布式自适应元强化学习
专知会员服务
24+阅读 · 2022年10月8日
UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
14+阅读 · 2022年5月4日
【NeurIPS 2020】融入BERT到并行序列模型
专知会员服务
26+阅读 · 2020年10月15日
专知会员服务
63+阅读 · 2020年3月4日
NLG任务评价指标BLEU与ROUGE
AINLP
21+阅读 · 2020年5月25日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
半监督多任务学习:Semisupervised Multitask Learning
我爱读PAMI
18+阅读 · 2018年4月29日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
22+阅读 · 2023年5月10日
【NeurIPS2022】分布式自适应元强化学习
专知会员服务
24+阅读 · 2022年10月8日
UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
14+阅读 · 2022年5月4日
【NeurIPS 2020】融入BERT到并行序列模型
专知会员服务
26+阅读 · 2020年10月15日
专知会员服务
63+阅读 · 2020年3月4日
相关资讯
NLG任务评价指标BLEU与ROUGE
AINLP
21+阅读 · 2020年5月25日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
半监督多任务学习:Semisupervised Multitask Learning
我爱读PAMI
18+阅读 · 2018年4月29日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
相关基金
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员