Understanding the origins of militarized conflict is a complex, yet important undertaking. Existing research seeks to build this understanding by considering bi-lateral relationships between entity pairs (dyadic causes) and multi-lateral relationships among multiple entities (systemic causes). The aim of this work is to compare these two causes in terms of how they correlate with conflict between two entities. We do this by devising a set of textual and graph-based features which represent each of the causes. The features are extracted from Wikipedia and modeled as a large graph. Nodes in this graph represent entities connected by labeled edges representing ally or enemy-relationships. This allows casting the problem as an edge classification task, which we term dyad classification. We propose and evaluate classifiers to determine if a particular pair of entities are allies or enemies. Our results suggest that our systemic features might be slightly better correlates of conflict. Further, we find that Wikipedia articles of allies are semantically more similar than enemies.


翻译:了解军事化冲突的起源是一项复杂而又重要的事业。 现有的研究试图通过考虑实体对对(dyadic cause)与多个实体之间的多边关系(sycriminal causes)之间的双边关系( 系统原因) 来建立这种理解。 这项工作的目的是比较这两个原因与两个实体之间的冲突之间的关系。 我们这样做的方法是设计一套反映每个原因的文本和图表特征。 特征从维基百科中提取,以大图表为模型。 本图中的节点代表了由代表盟国或敌国关系的标签边缘连接起来的实体。 这样可以将问题描绘为边缘分类任务, 我们称之为dyad 分类。 我们建议和评估分类者, 以确定某一对实体是否为盟友或敌人。 我们的结果表明,我们的系统特征可能比冲突的关联略好一些。 此外, 我们发现维基百科的盟友文章在语义上比敌人更为相似。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2020年9月6日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2018年11月15日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
5+阅读 · 2021年2月15日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
3+阅读 · 2018年2月20日
Arxiv
5+阅读 · 2018年1月23日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2018年11月15日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员