This study uses double/debiased machine learning (DML) to evaluate the impact of transitioning from lecture-based blended teaching to a flipped classroom concept. Our findings indicate effects on students' self-conception, procrastination, and enjoyment. We do not find significant positive effects on exam scores, passing rates, or knowledge retention. This can be explained by the insufficient use of the instructional approach that we can identify with uniquely detailed usage data and highlights the need for additional teaching strategies. Methodologically, we propose a powerful DML approach that acknowledges the latent structure inherent in Likert scale variables and, hence, aligns with psychometric principles.
翻译:本研究采用双重/去偏机器学习方法,评估从基于讲座的混合教学向翻转课堂模式转变的影响。研究结果表明,该转变对学生的自我认知、拖延行为和课程享受度产生影响。然而,在考试成绩、通过率及知识留存方面未发现显著的积极效应。这一现象可通过教学法应用不足来解释——我们通过独特精细的使用数据识别出该问题,并凸显了补充教学策略的必要性。在方法论层面,我们提出一种有效的双重/去偏机器学习方法,该方法承认李克特量表变量固有的潜在结构,从而符合心理测量学原理。