In this work, we present a multiscale approach for the reliable coarse-scale approximation of spatial network models represented by a linear system of equations with respect to the nodes of a graph. The method is based on the ideas of the Localized Orthogonal Decomposition (LOD) strategy and is constructed in a fully algebraic way. This allows to apply the method to geometrically challenging objects such as corrugated cardboard. In particular, the method can also be applied to finite difference or finite element discretizations of elliptic partial differential equations, yielding an approximation with similar properties as the LOD in the continuous setting. We present a rigorous error analysis of the proposed method under suitable assumptions on the network. Moreover, numerical examples are presented that underline our theoretical results.
翻译:暂无翻译