We present a decentralized control algorithm for a robotic swarm given the task of encapsulating static and moving targets in a bounded unknown environment. We consider minimalist robots without memory, explicit communication, or localization information. The state-of-the-art approaches generally assume that the robots in the swarm are able to detect the relative position of neighboring robots and targets in order to provide convergence guarantees. In this work, we propose a novel control law for the guaranteed encapsulation of static and moving targets while avoiding all collisions, when the robots do not know the exact relative location of any robot or target in the environment. We make use of the Lyapunov stability theory to prove the convergence of our control algorithm and provide bounds on the ratio between the target and robot speeds. Furthermore, our proposed approach is able to provide stochastic guarantees under the bounds that we determine on task parameters for scenarios where a target moves faster than a robot. Finally, we present an analysis of how the emergent behavior changes with different parameters of the task and noisy sensor readings.
翻译:鉴于在封闭的未知环境中封装静态和移动目标的任务,我们提出了一个机器人群的分散控制算法。我们考虑了没有内存、明确通信或本地化信息的最小化机器人。最先进的方法一般认为,群中机器人能够探测到相邻机器人和目标的相对位置,以便提供趋同保证。在这项工作中,我们提出了一个新的控制法,用于保证静态和移动目标的封装,同时避免所有碰撞,当机器人不知道任何机器人或目标在环境中的确切相对位置时。我们利用Lyapunov稳定性理论来证明我们控制算法的趋同,并提供目标与机器人速度之比的界限。此外,我们提出的方法能够在我们确定目标移动速度比机器人快的情景任务参数的界限下提供随机保证。最后,我们分析了任务和感应器读的不同参数下新出现的行为变化情况。