Semantic segmentation is the problem of assigning a class label to every pixel in an image, and is an important component of an autonomous vehicle vision stack for facilitating scene understanding and object detection. However, many of the top performing semantic segmentation models are extremely complex and cumbersome, and as such are not suited to deployment onboard autonomous vehicle platforms where computational resources are limited and low-latency operation is a vital requirement. In this survey, we take a thorough look at the works that aim to address this misalignment with more compact and efficient models capable of deployment on low-memory embedded systems while meeting the constraint of real-time inference. We discuss several of the most prominent works in the field, placing them within a taxonomy based on their major contributions, and finally we evaluate the inference speed of the discussed models under consistent hardware and software setups that represent a typical research environment with high-end GPU and a realistic deployed scenario using low-memory embedded GPU hardware. Our experimental results demonstrate that many works are capable of real-time performance on resource-constrained hardware, while illustrating the consistent trade-off between latency and accuracy.


翻译:语义分解是给图像中的每个像素指定一个类标签的问题,是自动车辆视觉堆积的重要组成部分,有助于了解现场和探测物体。然而,许多最精致的语义分解模型极其复杂和繁琐,因此不适合在自动车辆平台上部署,在这些平台上,计算资源有限,低纬度操作是一项至关重要的要求。在本次调查中,我们透彻地审视了旨在解决这种与更紧凑、效率更高的模型不匹配的工程,这些模型能够在满足实时推断限制的同时,在低模嵌入系统上部署,同时满足实时内嵌的制约。我们讨论了该领域的一些最突出的工程,根据它们的主要贡献将其置于分类中,最后,我们根据它们的主要贡献,评估了讨论过的模型的推论速度,这些模型在连贯的硬件和软件组合下代表一种典型的研究环境,具有高端的GPU,而使用低模嵌入式的GPU硬件是现实的部署情景。我们的实验结果表明,许多工程能够实时地在资源紧缺的硬件上进行操作,同时说明固定和精确之间的交易。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
12+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月3日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
17+阅读 · 2020年11月15日
A Comprehensive Survey on Graph Neural Networks
Arxiv
21+阅读 · 2019年1月3日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
12+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员