We study the separation of positive and negative data examples in terms of description logic concepts in the presence of an ontology. In contrast to previous work, we add a signature that specifies a subset of the symbols that can be used for separation, and we admit individual names in that signature. We consider weak and strong versions of the resulting problem that differ in how the negative examples are treated and we distinguish between separation with and without helper symbols. Within this framework, we compare the separating power of different languages and investigate the complexity of deciding separability. While weak separability is shown to be closely related to conservative extensions, strongly separating concepts coincide with Craig interpolants, for suitably defined encodings of the data and ontology. This enables us to transfer known results from those fields to separability. Conversely, we obtain original results on separability that can be transferred backward. For example, rather surprisingly, conservative extensions and weak separability in ALCO are both 3ExpTime-complete.


翻译:与先前的工作不同,我们增加了一个签名,指定了可用于分离的一组符号,并在该签名中承认了单个名称。我们考虑了由此产生的问题的薄弱和强效版本,这些问题在如何处理负面示例方面各不相同,我们区分了与辅助符号的分离和与辅助符号的分离。在此框架内,我们比较了不同语言的分离力,并调查了决定分离性的复杂性。虽然弱分离性与保守性扩展密切相关,但与克雷格内部插图有强烈的区别,概念与克雷格内部插图相一致,以便适当定义的数据和本体编码。这使我们能够将已知的这些领域成果转移至分离性。相反,我们获得了关于可转移后转移的分离性原始结果。例如,令人惊讶的是,在ALCO中,保守的扩展和薄弱的分离性都是3ExplateTime-compility。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
【AAAI2021】可解释图胶囊网络物体检测
专知会员服务
27+阅读 · 2021年1月4日
专知会员服务
17+阅读 · 2020年9月6日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月14日
Arxiv
0+阅读 · 2021年9月11日
Arxiv
4+阅读 · 2019年12月2日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员