We propose a method for detecting structural changes in a city using images captured from vehicular mounted cameras over traversals at two different times. We first generate 3D point clouds for each traversal from the images and approximate GNSS/INS readings using Structure-from-Motion (SfM). A direct comparison of the two point clouds for change detection is not ideal due to inaccurate geo-location information and possible drifts in the SfM. To circumvent this problem, we propose a deep learning-based non-rigid registration on the point clouds which allows us to compare the point clouds for structural change detection in the scene. Furthermore, we introduce a dual thresholding check and post-processing step to enhance the robustness of our method. We collect two datasets for the evaluation of our approach. Experiments show that our method is able to detect scene changes effectively, even in the presence of viewpoint and illumination differences.
翻译:我们建议采用一种方法来探测城市的结构性变化,在两次不同的时间里使用从车辆挂起的摄像机上拍摄到的图象来探测横跨横道的图象;我们首先从图像中产生3D点云层,然后利用结构从运动中得出的大致导航系统/INS读数(SfM),对两点云进行直接比较,以发现变化是不理想的,因为地理定位信息不准确,而且SfM中可能发生漂移。为避免这一问题,我们提议在点云上进行深层次的基于学习的非硬性登记,使我们能够比较点云,以便在现场进行结构变化探测。此外,我们引入了双重临界检查和后处理步骤,以提高我们方法的稳健性。我们收集了两套数据,用于评估我们的方法。实验表明,我们的方法能够有效地探测场的变化,即使存在观点和照明差异。