Influencers are key to the nature and networks of information propagation on social media. Influencers are particularly important in political discourse through their engagement with issues, and may derive their legitimacy either solely or in large part through online operation, or have an offline sphere of expertise such as entertainers, journalists etc. To quantify influencers' political engagement and polarity, we use Google's Universal Sentence Encoder (USE) to encode the tweets of 6k influencers and 26k Indian politicians during political crises in India. We then obtain aggregate vector representations of the influencers based on their tweet embeddings, which alongside retweet graphs help compute their stance and polarity with respect to these political issues. We find that influencers engage with the topics in a partisan manner, with polarized influencers being rewarded with increased retweeting and following. Moreover, we observe that specific groups of influencers are consistently polarized across all events. We conclude by discussing how our study provides insights into the political schisms of present-day India, but also offers a means to study the role of influencers in exacerbating political polarization in other contexts.


翻译:影响者是社交媒体信息传播的性质和网络的关键。 影响者通过其对问题的参与,在政治对话中特别重要,并且可能仅仅或在很大程度上通过在线运作获得合法性,或者通过娱乐者、记者等离线专业领域。 为了量化影响者的政治参与和极性,我们使用谷歌的“普世判决编码器(USE ) ” 来编码印度政治危机期间6k影响者和26k印度政治家的推文。然后,我们根据他们的推文嵌入,获得影响者的总体矢量代表,这些推入与回调图表一起,有助于了解其立场和对政治问题的极性。我们发现,影响者以党派方式参与这些议题,对极化影响者给予更多的回旋和后续奖励。此外,我们发现,特定的影响者群体在所有事件上始终处于两极分化状态。我们通过讨论我们的研究如何提供对当今印度政治分化的深刻见解的洞察力,同时也提供了研究影响者在加剧其他背景下政治两极化中的作用的手段。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
37+阅读 · 2021年4月27日
专知会员服务
112+阅读 · 2020年11月16日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
3+阅读 · 2019年9月4日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
1+阅读 · 2021年11月5日
Arxiv
5+阅读 · 2015年9月14日
VIP会员
相关VIP内容
专知会员服务
37+阅读 · 2021年4月27日
专知会员服务
112+阅读 · 2020年11月16日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
3+阅读 · 2019年9月4日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员