Local entropic loss functions provide a versatile framework to define architecture-aware regularization procedures. Besides the possibility of being anisotropic in the synaptic space, the local entropic smoothening of the loss function can vary during training, thus yielding a tunable model complexity. A scoping protocol where the regularization is strong in the early-stage of the training and then fades progressively away constitutes an alternative to standard initialization procedures for deep convolutional neural networks, nonetheless, it has wider applicability. We analyze anisotropic, local entropic smoothenings in the language of statistical physics and information theory, providing insight into both their interpretation and workings. We comment some aspects related to the physics of renormalization and the spacetime structure of convolutional networks.
翻译:局部热带损失功能为界定结构意识正规化程序提供了一个多功能框架,除了有可能成为合成空间中的厌食性现象外,当地损失功能的平稳化在培训期间也会发生变化,从而产生一种可捕捉的模型复杂性。在培训的早期阶段,正规化程度很强,然后逐渐消失的范围界定协议是深层革命神经网络标准初始化程序的替代方法,但具有更广泛的适用性。我们用统计物理和信息理论的语言分析厌食性、局部的环向性平稳化,提供对其解释和作用的洞察力。我们评论了与革命网络的重新整顿物理学和空间时间结构有关的一些方面。