Solar activity has significant impacts on human activities and health. One most commonly used measure of solar activity is the sunspot number. This paper compares three important non-deep learning models, four popular deep learning models, and their five ensemble models in forecasting sunspot numbers. In particular, we propose an ensemble model called XGBoost-DL, which uses XGBoost as a two-level nonlinear ensemble method to combine the deep learning models. Our XGBoost-DL achieves the best forecasting performance (RMSE = 25.70 and MAE = 19.82) in the comparison, outperforming the best non-deep learning model SARIMA (RMSE = 54.11 and MAE = 45.51), the best deep learning model Informer (RMSE = 29.90 and MAE = 22.35) and the NASA's forecast (RMSE = 48.38 and MAE = 38.45). Our XGBoost-DL forecasts a peak sunspot number of 133.47 in May 2025 for Solar Cycle 25 and 164.62 in November 2035 for Solar Cycle 26, similar to but later than the NASA's at 137.7 in October 2024 and 161.2 in December 2034. An open-source Python package of our XGBoost-DL for the sunspot number prediction is available at https://github.com/yd1008/ts_ensemble_sunspot.
翻译:太阳活动对人类活动和健康有重大影响。最常用的太阳活动衡量标准之一是太阳日记数。本文比较了三个重要的非深层学习模型、四个广受欢迎的深层学习模型及其在预测太阳日记数方面的五种混合模型。特别是,我们提出了一个称为XGBoost-DL的混合模型,该模型使用XGBoost作为两级非线性非线性混合方法,将深层学习模型结合起来。我们的XGBoost-DL在比较中实现了最佳的预测性能(RUSE=25.70和MAE=19.82),在SARIMA(RMSE=54.11和MAE=45.51)中优于最佳的非深层学习模型,最佳深层学习模型(RMSE=29.90和MAE=22.35)和美国航天局的预测(RMSE=48.38和MAE =38.45)。我们XGBost-DL预测2025和164.62年11月20.35日太阳周期内最佳非深层Sy非深层S. 1774/10月16号P.24号太阳周期的S.72号太阳轨道上,在10月1737号P.72号P.72号中,在10月1737号S-12月18号S.24号的公开轨道上比美国航天系统第27号S.72号S.72号S.