Recent studies have shown that Deep Neural Networks (DNNs) are vulnerable to the backdoor attacks, which leads to malicious behaviors of DNNs when specific triggers are attached to the input images. It was further demonstrated that the infected DNNs possess a collection of channels, which are more sensitive to the backdoor triggers compared with normal channels. Pruning these channels was then shown to be effective in mitigating the backdoor behaviors. To locate those channels, it is natural to consider their Lipschitzness, which measures their sensitivity against worst-case perturbations on the inputs. In this work, we introduce a novel concept called Channel Lipschitz Constant (CLC), which is defined as the Lipschitz constant of the mapping from the input images to the output of each channel. Then we provide empirical evidences to show the strong correlation between an Upper bound of the CLC (UCLC) and the trigger-activated change on the channel activation. Since UCLC can be directly calculated from the weight matrices, we can detect the potential backdoor channels in a data-free manner, and do simple pruning on the infected DNN to repair the model. The proposed Channel Lipschitzness based Pruning (CLP) method is super fast, simple, data-free and robust to the choice of the pruning threshold. Extensive experiments are conducted to evaluate the efficiency and effectiveness of CLP, which achieves state-of-the-art results among the mainstream defense methods even without any data. Source codes are available at https://github.com/rkteddy/channel-Lipschitzness-based-pruning.


翻译:最近的研究显示,深神经网络(DNNS)很容易受到后门攻击,在输入图像附着特定触发器时,DNNS的恶意行为导致DNS的恶意行为;还表明,受感染的DNNS拥有一系列频道,这些频道与正常频道相比,对后门触发器更为敏感;然后,这些频道在减轻后门行为方面被证明是有效的;要找到这些频道,自然可以考虑它们的Lipschitzness,用来测量它们对于输入输入输入中最坏情况干扰的敏感度。在这项工作中,我们引入了一个新概念,称为Chanel Lipschitz Constant(CLC),它的定义是:从输入图像图像到每个频道输出输出的Lipschitz的绘图常数常数;然后,我们提供经验证据,表明CLCM(ULCS)上界与启动的触发器变化之间的密切关联性。由于UCLCF可以直接从重量矩阵中计算出,我们可以以无数据方式探测潜在的后门通道,在受感染者中间进行简单的评估,而无需在受感染的Prun-CLPNPRS-CS-CRS-CS-Servereal的快速检索数据模型进行。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
159+阅读 · 2020年1月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月1日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
159+阅读 · 2020年1月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员