We investigate the problem of estimating the drift parameter of a high-dimensional L\'evy-driven Ornstein--Uhlenbeck process under sparsity constraints. It is shown that both Lasso and Slope estimators achieve the minimax optimal rate of convergence (up to numerical constants), for tuning parameters chosen independently of the confidence level, which improves the previously obtained results for standard Ornstein--Uhlenbeck processes. The results are nonasymptotic and hold both in probability and conditional expectation with respect to an event resembling the restricted eigenvalue condition.
翻译:我们调查了高维L\'evy驱动的Ornstein-Uhlenbeck进程在聚度限制下的漂移参数估计问题,结果表明,Lasso和Slope估计器都实现了最小最佳趋同率(最高为数字常数),以调整与信任度无关的选定参数,从而改进了标准Ornstein-Uhlenbeck进程以前获得的结果。结果不简单,对与受限制的乙基值条件相类似的事件来说,其概率和有条件的预期都保持不变。