Modern recommender systems often embed users and items into low-dimensional latent representations, based on their observed interactions. In practical recommendation scenarios, users often exhibit various intents which drive them to interact with items with multiple behavior types (e.g., click, tag-as-favorite, purchase). However, the diversity of user behaviors is ignored in most of the existing approaches, which makes them difficult to capture heterogeneous relational structures across different types of interactive behaviors. Exploring multi-typed behavior patterns is of great importance to recommendation systems, yet is very challenging because of two aspects: i) The complex dependencies across different types of user-item interactions; ii) Diversity of such multi-behavior patterns may vary by users due to their personalized preference. To tackle the above challenges, we propose a Multi-Behavior recommendation framework with Graph Meta Network to incorporate the multi-behavior pattern modeling into a meta-learning paradigm. Our developed MB-GMN empowers the user-item interaction learning with the capability of uncovering type-dependent behavior representations, which automatically distills the behavior heterogeneity and interaction diversity for recommendations. Extensive experiments on three real-world datasets show the effectiveness of MB-GMN by significantly boosting the recommendation performance as compared to various state-of-the-art baselines. The source code is available athttps://github.com/akaxlh/MB-GMN.


翻译:现代建议系统往往根据观察到的相互作用,将用户和项目嵌入低维潜表层中。在实际的建议假设中,用户往往表现出各种意图,促使他们与多种行为类型的项目互动(例如点击、标签和爱好、购买)。然而,大多数现有方法忽视了用户行为的多样性,这使得他们难以将多种类型关系结构纳入不同类型互动行为模式。探索多类型行为模式对于建议系统非常重要,但是由于以下两个方面而非常具有挑战性:一)不同类型用户-项目互动的复杂依赖性;二)这种多行为模式的多样性可能因用户的个人偏好而不同。为了应对上述挑战,我们提议了一个多种行为建议框架,与图表元模型网络一道,将多类型模式模型纳入到不同类型的互动行为模式中。我们开发的MB-GMN能够让用户-项目互动学习与识别基于类型的行为模型的表达能力相适应,从而自动地将行为偏差/互动模式模式模式模式模式模式因不同而不同;二)这种多行为模式模式的多样性可能因用户而不同而不同,可能因用户而不同。为了个人偏好而不同。为了应对以上挑战,我们提出的多种行为模式建议,因此,我们提出了多位建议建议建议框架建议框架建议框架建议框架建议框架建议框架建议框架框架,以将之,将多维,将多功能模式模式模式模式模式模式模式模式模式/互动框架。通过不同类型/互动。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【综述笔记】Graph Neural Networks in Recommender Systems
图与推荐
5+阅读 · 2020年12月8日
最新图学习推荐系统综述 | Graph Learning Approaches to Recommender Systems
机器学习与推荐算法
5+阅读 · 2020年4月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Arxiv
15+阅读 · 2021年6月27日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
Arxiv
10+阅读 · 2019年2月19日
Learning Recommender Systems from Multi-Behavior Data
Arxiv
7+阅读 · 2018年11月29日
VIP会员
相关VIP内容
相关资讯
【综述笔记】Graph Neural Networks in Recommender Systems
图与推荐
5+阅读 · 2020年12月8日
最新图学习推荐系统综述 | Graph Learning Approaches to Recommender Systems
机器学习与推荐算法
5+阅读 · 2020年4月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Top
微信扫码咨询专知VIP会员