We introduce and analyse the first order Enlarged Enhancement Virtual Element Method (E$^2$VEM) for the Poisson problem. The method has the interesting property of allowing the definition of bilinear forms that do not require a stabilization term. We provide a proof of well-posedness and optimal order a priori error estimates. Numerical tests on convex and non-convex polygonal meshes confirm the theoretical convergence rates.
翻译:我们引入并分析Poisson问题的第一顺序“扩大增强虚拟元素方法(E$2$VEM) ” 。 该方法具有允许定义不需要稳定化术语的双线形式这一有趣的特性。 我们提供了证据,证明精密和最优顺序的先验误差估计。 对 convex 和非convex 多边形线的数值测试证实了理论趋同率 。