Causal structure learning, a prominent technique for encoding cause and effect relationships among variables, through Bayesian Networks (BNs). Merely recovering causal structures from real-world observed data lacks precision, while the development of Large Language Models (LLM) is opening a new frontier of causality. LLM presents strong capability in discovering causal relationships between variables with the "text" inputs defining the investigated variables, leading to a potential new hierarchy and new ladder of causality. We aim an critical issue in the emerging topic of LLM based causal structure learning, to tackle erroneous prior causal statements from LLM, which is seldom considered in the current context of expert dominating prior resources. As a pioneer attempt, we propose a BN learning strategy resilient to prior errors without need of human intervention. Focusing on the edge-level prior, we classify the possible prior errors into three types: order-consistent, order-reversed, and irrelevant, and provide their theoretical impact on the Structural Hamming Distance (SHD) under the presumption of sufficient data. Intriguingly, we discover and prove that only the order-reversed error contributes to an increase in a unique acyclic closed structure, defined as a "quasi-circle". Leveraging this insight, a post-hoc strategy is employed to identify the order-reversed prior error by its impact on the increment of "quasi-circles". Through empirical evaluation on both real and synthetic datasets, we demonstrate our strategy's robustness against prior errors. Specifically, we highlight its substantial ability to resist order-reversed errors while maintaining the majority of correct prior knowledge.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员