Personalized medicine remains a major challenge for scientists. The rapid growth of Machine learning and Deep learning has made them a feasible al- ternative for predicting the most appropriate therapy for individual patients. However, the need to develop a custom model for every dataset, the lack of interpretation of their results and high computational requirements make many reluctant to use these methods. Aiming to save time and bring light to the way models work internally, SIBILA has been developed. SIBILA is an ensemble of machine learning and deep learning models that applies a range of interpretability algorithms to identify the most relevant input features. Since the interpretability algo- rithms may not be in line with each other, a consensus stage has been imple- mented to estimate the global attribution of each variable to the predictions. SIBILA is containerized to be run on any high-performance computing plat- form. Although conceived as a command-line tool, it is also available to all users free of charge as a web server at https://bio-hpc.ucam.edu/sibila. Thus, even users with few technological skills can take advantage of it. SIBILA has been applied to two medical case studies to show its ability to predict in classification problems. Even though it is a general-purpose tool, it has been developed with the aim of becoming a powerful decision-making tool for clinicians, but can actually be used in many other domains. Thus, other two non-medical examples are supplied as supplementary material to prove that SIBILA still works well with noise and in regression problems.
翻译:暂无翻译