Sign language recognition (SLR) aims to overcome the communication barrier for the people with deafness or the people with hard hearing. Most existing approaches can be typically divided into two lines, i.e., Skeleton-based and RGB-based methods, but both the two lines of methods have their limitations. RGB-based approaches usually overlook the fine-grained hand structure, while Skeleton-based methods do not take the facial expression into account. In attempts to address both limitations, we propose a new framework named Spatial-temporal Part-aware network (StepNet), based on RGB parts. As the name implies, StepNet consists of two modules: Part-level Spatial Modeling and Part-level Temporal Modeling. Particularly, without using any keypoint-level annotations, Part-level Spatial Modeling implicitly captures the appearance-based properties, such as hands and faces, in the feature space. On the other hand, Part-level Temporal Modeling captures the pertinent properties over time by implicitly mining the long-short term context. Extensive experiments show that our StepNet, thanks to Spatial-temporal modules, achieves competitive Top-1 Per-instance accuracy on three widely-used SLR benchmarks, i.e., 56.89% on WLASL, 77.2% on NMFs-CSL, and 77.1% on BOBSL. Moreover, the proposed method is compatible with the optical flow input, and can yield higher performance if fused. We hope that this work can serve as a preliminary step for the people with deafness.


翻译:手势语言识别( SLR) 旨在克服聋哑人或听力困难者的沟通障碍。 多数现有方法通常可以分为两行, 即Skeleton 和 RGB 两种方法, 但这两种方法都有其局限性。 RGB 方法通常忽略细微的手部结构, 而Skeleton 方法则不考虑面部表达。 为了解决这两个限制, 我们提议了一个以 RGB 部分为基础的新的框架, 名为时空部分网络(StepNet ) 。 正如这个名称所暗示的那样, StepNet 由两个模块组成: 部分空间建模和部分Timalal 模式。 特别是, 不使用任何关键点级别说明, 部分空间建模模式暗含基于外观的属性, 如手和脸。 另一方面, 部分的Timaloral 模型可以通过隐含地挖掘长时段背景来捕捉相关属性。 广泛的实验显示, 我们的 StepNet, 如果借助空间- 时间流流, IMFL 工作在SBS-1 上, 的S- boral- breal oral oral laimal lax supal lax the the the the the the the the the the Stepal lax lax the sal- lax lax the supal lax the sweal- plegal lax, laveal laveal laveal lax supal lax supal lax the sild.

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月7日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
11+阅读 · 2018年10月17日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员