项目名称: 染料敏化太阳电池中的纳晶表面有机分子组装、微结构及动力学研究

项目编号: No.21203175

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 物理化学

项目作者: 李仁志

作者单位: 中国科学院长春应用化学研究所

项目金额: 27万元

中文摘要: 目前人们对染料敏化太阳电池中与界面多通道电荷转移动力学密切相关的纳晶表面有机分子组装及微结构的理解不甚清楚,未能实现复杂界面电荷转移动力学的有效控制,导致器件效率提升缓慢。本项目拟籍助扫描探针显微镜、光电子能谱、X射线反射谱及掠角反射吸收红外光谱等表面分析技术,研究染料/二氧化钛组装体的微观形态并揭示染料分子自组装过程的调控机制,在此基础上对染料分子在二氧化钛纳晶表面的自组装层进行调控与修复。利用时间分辨光谱和电学表征技术,系统研究器件工作条件下界面多组分相互作用及其对界面热力学、电荷转移动力学的影响规律,揭示染料分子结构-组装体微观形态-界面物化特性-器件参数之间的内在关联,为染料敏化太阳电池关键材料及器件结构的进一步理性设计提供理论与实验依据。

中文关键词: 染料敏化太阳电池;自组装;界面化学;电荷转移;

英文摘要: Due to the present poor understanding on the organization and microstructure of organic molecules on nanocrystals which are closely related to multi-channel charge transfer kinetics in dye-sensitized solar cells (DSCs), it is not yet to realize rational controls on charge transfer kinetics at the complicated interface, resulting in a relatively sluggish enhancement of cell efficiency. In this project, we will investigate the micro-scale morphology of dye/titania assemblies and uncover the microscopic mechanism of self-assembly process of dye molecules on titania by means of several surface analysis techniques, such as scanning probe microscopy, photoelectron spectroscopy, X-ray reflection spectroscopy and grazing angle reflection-absorption infrared spectroscopy. On the base of the aforementioned progress, we implement the favorable regulation and repair of self-assembled molecular layers of dye molecules on titania nanocrystals. Moreover, we will systematically study the multi-component interactions at interface and their impacts on interfacial energetics and kinetics of cells at the operation conditions with the aid of joint time-resolved photophysical and electrical techniques, disclosing the intrinsic relationship among molecular structure, microstructure of the assemblies and interfacial physicochemical pr

英文关键词: dye-sensitized solar cell;self-assembly;interface chemistry;charge transfer;

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
40+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
37+阅读 · 2021年2月10日
小贴士
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员