This work proposes a wavelet shrinkage rule under asymmetric LINEX loss function and a mixture of a point mass function at zero and the logistic distribution as prior distribution to the wavelet coefficients in a nonparametric regression model with gaussian error. Underestimation of a significant wavelet coefficient can lead to a bad detection of features of the unknown function such as peaks, discontinuities and oscillations. It can also occur under asymmetrically distributed wavelet coefficients. Thus the proposed rule is suitable when overestimation and underestimation have asymmetric losses. Statistical properties of the rule such as squared bias, variance, frequentist and bayesian risks are obtained. Simulation studies are conducted to evaluate the performance of the rule against standard methods and an application in a real dataset involving infrared spectra is provided.
翻译:暂无翻译