Data vectors generalise finite multisets: they are finitely supported functions into a commutative monoid. We study the question if a given data vector can be expressed as a finite sum of others, only assuming that 1) the domain is countable and 2) the given set of base vectors is finite up to permutations of the domain. Based on a succinct representation of the involved permutations as integer linear constraints, we derive that positive instances can be witnessed in a bounded subset of the domain. For data vectors over a group we moreover study when a data vector is reversible, that is, if its inverse is expressible using only nonnegative coefficients. We show that if all base vectors are reversible then the expressibility problem reduces to checking membership in finitely generated subgroups. Moreover, checking reversibility also reduces to such membership tests. These questions naturally appear in the analysis of counter machines extended with unordered data: namely, for data vectors over $(\mathbb{Z}^d,+)$ expressibility directly corresponds to checking state equations for Coloured Petri nets where tokens can only be tested for equality. We derive that in this case, expressibility is in NP, and in P for reversible instances. These upper bounds are tight: they match the lower bounds for standard integer vectors (over singleton domains).


翻译:数据矢量概括了有限的多设置 : 它们是有限的支持函数, 形成一个通俗单项 。 我们研究一个问题, 如果给定的数据矢量能够以其他矢量的有限和数量表示, 只是假设 1) 域是可数数的, 2) 给定的一组基矢量限制到域的变异。 基于所涉变异的简明表述, 作为整数线性限制, 我们推算出, 可在域内一个受约束的子组中看到正面实例 。 对于一个组的数据矢量, 当数据矢量是可反转的, 也就是说, 如果其反向只能使用非负系数表示 。 我们显示, 如果所有基矢量都是可变的, 则可变性问题会降低到检查有限生成的分组的会籍 。 此外, 检查可逆性也会降低到这样的会籍测试 。 这些问题自然出现在对反控机器的分析中, 即, 如果数据矢量大于 $( mathbbbbbbc), +$ $, 表示可直接对应性直接对应检查有色化的顶端的顶端网格, 。 在直径的域中, 直径直径直方域中, 直方体域中, 直方体中, 直方体域中要测试这些直方体的直方体将显示。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
156+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Neural Response Generation with Meta-Words
Arxiv
6+阅读 · 2019年6月14日
Learning to Importance Sample in Primary Sample Space
Arxiv
3+阅读 · 2018年2月24日
Arxiv
4+阅读 · 2017年10月30日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
156+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员