Stereo matching is an important task in computer vision which has drawn tremendous research attention for decades. While in terms of disparity accuracy, density and data size, public stereo datasets are difficult to meet the requirements of models. In this paper, we aim to address the issue between datasets and models and propose a large scale stereo dataset with high accuracy disparity ground truth named PlantStereo. We used a semi-automatic way to construct the dataset: after camera calibration and image registration, high accuracy disparity images can be obtained from the depth images. In total, PlantStereo contains 812 image pairs covering a diverse set of plants: spinach, tomato, pepper and pumpkin. We firstly evaluated our PlantStereo dataset on four different stereo matching methods. Extensive experiments on different models and plants show that compared with ground truth in integer accuracy, high accuracy disparity images provided by PlantStereo can remarkably improve the training effect of deep learning models. This paper provided a feasible and reliable method to realize plant surface dense reconstruction. The PlantStereo dataset and relative code are available at: https://www.github.com/wangqingyu985/PlantStereo
翻译:数十年来,在计算机视野中,立体相匹配是一项重要任务,引起了巨大的研究关注。尽管在准确性、密度和数据大小方面存在差异,但公共立体数据集很难满足模型要求。在本文件中,我们的目标是解决数据集和模型之间的问题,并提出一个大尺度的立体数据集,其精确度高不一的地面真象称为PlantStereo。我们使用半自动方法构建数据集:在摄像机校准和图像登记后,可以从深度图像中获取高准确性差异图像。总体而言,PlantStereo包含812对图像,覆盖多种植物:菠菜、番茄、辣椒和南瓜。我们首先用四种不同的立体匹配方法评估了我们的立体数据集。对不同模型和植物的广泛实验表明,与地面真象相比,PlantStereo提供的高准确性图像可以显著改善深层学习模型的培训效果。这份文件提供了实现植物表面密集性重建的可行和可靠方法。Plantepeo数据集和相对代码见:https://www.github.com/wangyutyutyum5/Spyutyuteal5/PlanSpeeteareo。