Hidden semi-Markov Models (HSMM's) - while broadly in use - are restricted to a discrete and uniform time grid. They are thus not well suited to explain often irregularly spaced discrete event data from continuous-time phenomena. We show that non-sampling-based latent state inference used in HSMM's can be generalized to latent Continuous-Time semi-Markov Chains (CTSMC's). We formulate integro-differential forward and backward equations adjusted to the observation likelihood and introduce an exact integral equation for the Bayesian posterior marginals and a scalable Viterbi-type algorithm for posterior path estimates. The presented equations can be efficiently solved using well-known numerical methods. As a practical tool, variable-step HSMM's are introduced. We evaluate our approaches in latent state inference scenarios in comparison to classical HSMM's.
翻译:隐藏半马尔科夫模型(HSMM的半马尔科夫模型)虽然广泛使用,但仅限于一个离散和统一的时间网格,因此不完全适合解释从连续时间现象中经常不定期间隔的离散事件数据。我们表明,HSMM所使用的非抽样基潜在状态推断可被普遍推广到潜伏的连续时间半马尔科夫链(CTSMC的)中。我们根据观察的可能性,设计了异式前方和后方方方方程,为Bayesian后方边缘引入了精确的整体方程,为后方路估计引入了可伸缩的Viterbi型算法。提出的方程可以使用众所周知的数字方法有效解决。作为一个实用工具,我们用典型的HSMMM的参数来评估我们潜伏状态假设方案。