Motivation: Automatic Anatomical Therapeutic Chemical (ATC) classification is a critical and highly competitive area of research in bioinformatics because of its potential for expediting drug develop-ment and research. Predicting an unknown compound's therapeutic and chemical characteristics ac-cording to how these characteristics affect multiple organs/systems makes automatic ATC classifica-tion a challenging multi-label problem. Results: In this work, we propose combining multiple multi-label classifiers trained on distinct sets of features, including sets extracted from a Bidirectional Long Short-Term Memory Network (BiLSTM). Experiments demonstrate the power of this approach, which is shown to outperform the best methods reported in the literature, including the state-of-the-art developed by the fast.ai research group. Availability: All source code developed for this study is available at https://github.com/LorisNanni. Contact: loris.nanni@unipd.it
翻译:动机:自动解剖治疗化学(ATC)分类是生物信息学研究的一个重要和高度竞争性的领域,因为它有可能加速药物开发和研究。预测未知化合物的治疗和化学特性,根据这些特性如何影响多个器官/系统,使自动解剖化学化学治疗化学分类成为一个具有挑战性的多标签问题。结果:在这项工作中,我们提议合并多个多标签分类分类人员,他们受过不同特征的培训,包括从双向长期短期记忆网络(BILSTM)提取的数据集。实验表明,这种方法的力量超过了文献中报告的最佳方法,包括快艇研究组开发的状态。可用性:为这项研究开发的所有源代码可在https://github.com/LorisNanni.contact:loris.nanni@unipd.it上查阅。