The construction of replication strategies for contingent claims in the presence of risk and market friction is a key problem of financial engineering. In real markets, continuous replication, such as in the model of Black, Scholes and Merton (BSM), is not only unrealistic but it is also undesirable due to high transaction costs. A variety of methods have been proposed to balance between effective replication and losses in the incomplete market setting. With the rise of Artificial Intelligence (AI), AI-based hedgers have attracted considerable interest, where particular attention was given to Recurrent Neural Network systems and variations of the $Q$-learning algorithm. From a practical point of view, sufficient samples for training such an AI can only be obtained from a simulator of the market environment. Yet if an agent was trained solely on simulated data, the run-time performance will primarily reflect the accuracy of the simulation, which leads to the classical problem of model choice and calibration. In this article, the hedging problem is viewed as an instance of a risk-averse contextual $k$-armed bandit problem, which is motivated by the simplicity and sample-efficiency of the architecture. This allows for realistic online model updates from real-world data. We find that the $k$-armed bandit model naturally fits to the Profit and Loss formulation of hedging, providing for a more accurate and sample efficient approach than $Q$-learning and reducing to the Black-Scholes model in the absence of transaction costs and risks.


翻译:在实际市场中,持续复制,如Black、Skoles和Merton(BSM)模型,不仅不现实,而且由于交易成本高,也不可取。提出了各种方法,以平衡在风险和市场摩擦情况下的有效复制和市场不完整环境中的损失。随着人工智能(AI)的兴起,以AI为基地的对冲者引起了相当大的兴趣,其中特别关注了经常性神经网络系统以及Q$-学习算法的变异。从实际的角度看,只有模拟市场环境的模拟器才能获得培训这种AI的足够样本。然而,如果一个代理器只接受模拟数据的培训,运行时的表现将主要反映模拟的准确性,这导致了典型选择和校准的典型问题。在本篇文章中,套头问题被视为一个风险偏重的美元背景网络网络系统和以Q$为单位学习算法的变异。从实际角度看,只有从模拟环境环境环境的模拟者才能获得足够的培训样本。如果一个代理器只接受模拟数据培训,运行时间的表现将主要反映模拟的准确性,这会导致模型选择和校正成本的正常的模型的升级。我们发现,从而从真实地提供精确的在线模型,从实际的模型更新,从标准,从实际的模型到提供,从标准成本的模型到为标准的模型的模型,从标准的模型和标准的模型的升级的模型的模型的模型的升级的模型的模型的模型的更新到为标准的模型的模型的模型的更新。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月20日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
17+阅读 · 2018年4月2日
VIP会员
相关VIP内容
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员