An important open problem in supersingular isogeny-based cryptography is to produce, without a trusted authority, concrete examples of "hard supersingular curves," that is, concrete supersingular curves for which computing the endomorphism ring is as difficult as it is for random supersingular curves. Or, even better, to produce a hash function to the vertices of the supersingular $\ell$-isogeny graph which does not reveal the endomorphism ring, or a path to a curve of known endomorphism ring. Such a hash function would open up interesting cryptographic applications. In this paper, we document a number of (thus far) failed attempts to solve this problem, in the hopes that we may spur further research, and shed light on the challenges and obstacles to this endeavour. The mathematical approaches contained in this article include: (i) iterative root-finding for the supersingular polynomial; (ii) gcd's of specialized modular polynomials; (iii) using division polynomials to create small systems of equations; (iv) taking random walks in the isogeny graph of abelian surfaces; and (v) using quantum random walks.
翻译:超星系基于异源的加密法中一个重要的开放问题是在没有可靠权威的情况下,生成“硬超超线曲线”的具体实例,即具体超超线曲线,因为计算内分形环和随机超超相曲线一样困难。或者,更糟糕的是,为超级星系$\ell美元-异源图的脊椎产生散状函数,该图不显示内分形环,也不显示已知内分形环曲线的曲线。这种散列函数将打开有趣的加密应用程序。在本文中,我们记录了一些(远远的)试图解决这一问题的尝试,希望我们能够刺激进一步的研究,并揭示这项工作的挑战和障碍。本文章所含的数学方法包括:(一) 超星系多元圆形环的迭代根调查,或通向已知内分形圆环曲线的路径。这样的散列函数将打开有趣的加密应用程序。在本文中,我们记录了一些(远的)试图解决这一问题的尝试失败,希望我们能够激发进一步的研究,并揭示这项工作的挑战和障碍。本文章所载的数学方法包括:(一) 超星系多元多式多式多式圆形圆形图的迭根调查;(二) 使用分式多式多式多式阵形图系统;三) 以建立小平面的平面的平流的平流系统;