Sponsored search auction is a crucial component of modern search engines. It requires a set of candidate bidwords that advertisers can place bids on. Existing methods generate bidwords from search queries or advertisement content. However, they suffer from the data noise in <query, bidword> and <advertisement, bidword> pairs. In this paper, we propose a triangular bidword generation model (TRIDENT), which takes the high-quality data of paired <query, advertisement> as a supervision signal to indirectly guide the bidword generation process. Our proposed model is simple yet effective: by using bidword as the bridge between search query and advertisement, the generation of search query, advertisement and bidword can be jointly learned in the triangular training framework. This alleviates the problem that the training data of bidword may be noisy. Experimental results, including automatic and human evaluations, show that our proposed TRIDENT can generate relevant and diverse bidwords for both search queries and advertisements. Our evaluation on online real data validates the effectiveness of the TRIDENT's generated bidwords for product search.
翻译:赞助的搜索拍卖是现代搜索引擎的关键组成部分。 它要求广告商能够推出一套候选人标语, 广告商可以使用这些标语。 现有的方法通过搜索询问或广告内容产生标语; 但是,它们会受到<询问、 标语> 和< 广告, 标语>对对面的数据噪音的影响。 在本文中,我们提出了一个三角标语生成模型(TRIDENT),该模型将配对 < 询问, 广告 > 的高质量数据作为间接指导标语生成过程的监督信号。 我们提议的模型既简单又有效:通过使用标语作为搜索查询与广告之间的桥梁,可以联合在三角培训框架内学习搜索查询、广告和标语。这缓解了标语培训数据可能很吵的问题。 实验结果,包括自动和人文评估,表明我们提议的TRIDENT能够产生相关和多样的标语,用于搜索和广告。 我们对在线真实数据的评估证实了TRIDENT生成的产品搜索标语的有效性。