Identifying systemic risk patterns in geopolitical, economic, financial, environmental, transportation, epidemiological systems, and their impacts is the key to risk management. This paper introduces two new endopathic and exopathic competing risks. The paper integrates the new extreme value theory for maxima of maxima and the autoregressive conditional Fr\'echet model for systemic risk into a new autoregressive conditional accelerated Fr\'echet (AcAF) model, which enables decoupling systemic risk into endopathic and exopathic competing risks. The paper establishes the probabilistic properties of stationarity and ergodicity of the AcAF model. Statistical inference is developed through conditional maximum likelihood estimation. The consistency and asymptotic normality of the estimators are derived. Simulation demonstrates the efficiency of the proposed estimators and the AcAF model's flexibility in modeling heterogeneous data. Empirical studies on the stock returns in S\&P 500 and the cryptocurrency trading show the superior performance of the proposed model in terms of the identified risk patterns, endopathic and exopathic competing risks, being informative with greater interpretability, enhancing the understanding of the systemic risks of a market and their causes, and making better risk management possible.
翻译:本文介绍了两种新的内分泌和异感相竞的风险。本文件将新极端价值理论纳入到一个新的自动递增、有条件加速Fr\'echet(AcAF)模型中,这种模型能够将系统性风险脱钩到内分解到内分解和异相竞争的风险中。本文确定了AcAF模型的稳定性和遗传性。统计推论是通过有条件的最大可能性估计得出的。估算器的连贯性和无偏向性常态性常态。模拟显示了拟议的估算器的效率以及AcAF模型在模型混杂数据方面的灵活性。S ⁇ P 500号股票回报和加密货币交易的实证性研究表明,拟议模型在确定的风险模式、内分泌和异性方面表现优异性。其统计推论是通过有条件的最大可能性估计得出的。估算器的一致性和无偏向性常性常性正常性模型的推算。模拟表明,拟议的估算器和AcAFFAF模型在模型在模型模型中具有高效率和灵活性,提高了对市场风险的理解,提高了对风险的理解和对风险的系统分析,提高了对风险的理解,提高了对风险的理解和对风险的分析。