Manifold learning methods play a prominent role in nonlinear dimensionality reduction and other tasks involving high-dimensional data sets with low intrinsic dimensionality. Many of these methods are graph-based: they associate a vertex with each data point and a weighted edge with each pair. Existing theory shows that the Laplacian matrix of the graph converges to the Laplace-Beltrami operator of the data manifold, under the assumption that the pairwise affinities are based on the Euclidean norm. In this paper, we determine the limiting differential operator for graph Laplacians constructed using $\textit{any}$ norm. Our proof involves an interplay between the second fundamental form of the manifold and the convex geometry of the given norm's unit ball. To demonstrate the potential benefits of non-Euclidean norms in manifold learning, we consider the task of mapping the motion of large molecules with continuous variability. In a numerical simulation we show that a modified Laplacian eigenmaps algorithm, based on the Earthmover's distance, outperforms the classic Euclidean Laplacian eigenmaps, both in terms of computational cost and the sample size needed to recover the intrinsic geometry.


翻译:Manide 学习方法在非线性维度减少和其他任务中发挥着突出作用, 涉及具有低内在维度的高维数据集。 许多这些方法都是基于图形的: 它们将顶点与每个数据点和加权边缘与每对对联系起来。 现有的理论显示, 图形的拉普拉西亚矩阵与数据元的Laplace- Beltrami操作员汇合, 假设对称的亲近性以欧洲的规范为基础。 在本文中, 我们确定使用 $\ textit{any} 规范构建的 Laplacian 图形的限值差值运算器。 我们的证据涉及二个基本形式的元和给定规范单位球的 convex几何性之间的相互作用。 要显示非ELlocidean 规范在多重学习中的潜在好处, 我们考虑对具有持续变异性的大分子运动进行绘图的任务 。 在数字模拟中, 我们显示, 以地球覆盖的距离为基础, 超越了经典的 Euclideidemaphisal 计算法所需的精度成本 。

0
下载
关闭预览

相关内容

流形学习,全称流形学习方法(Manifold Learning),自2000年在著名的科学杂志《Science》被首次提出以来,已成为信息科学领域的研究热点。在理论和应用上,流形学习方法都具有重要的研究意义。假设数据是均匀采样于一个高维欧氏空间中的低维流形,流形学习就是从高维采样数据中恢复低维流形结构,即找到高维空间中的低维流形,并求出相应的嵌入映射,以实现维数约简或者数据可视化。它是从观测到的现象中去寻找事物的本质,找到产生数据的内在规律。
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
44+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
186+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
270+阅读 · 2019年10月9日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Deep Learning for Energy Markets
Arxiv
8+阅读 · 2019年4月10日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
11+阅读 · 2018年7月8日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
44+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
186+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
270+阅读 · 2019年10月9日
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员