In a series of recent papers the spectral behavior of the matrix sequence $\{Y_nT_n(f)\}$ is studied in the sense of the spectral distribution, where $Y_n$ is the main antidiagonal (or flip matrix) and $T_n(f)$ is the Toeplitz matrix generated by the function $f$, with $f$ being Lebesgue integrable and with real Fourier coefficients. This kind of study is also motivated by computational purposes for the solution of the related large linear systems using the (preconditioned) MINRES algorithm. Here we complement the spectral study with more results holding both asymptotically and for a fixed dimension $n$, and with regard to eigenvalues, singular values, and eigenvectors of $T_n(f), Y_nT_n(f)$ and to several relationships among them: beside fast linear solvers, a further target is the design of ad hoc procedures for the computation of the related spectra via matrix-less algorithms, with a cost being linear in the number of computed eigenvalues. We emphasize that the challenge of the case of non-monotone generating functions is considered in the current work, for which the previous matrix-less algorithms fail. Numerical experiments are reported and commented, with the aim of showing in a visual way the theoretical analysis.
翻译:在最近一系列论文中,对基质序列 $Y_nT_n_n(f)\\\\\\\\\\\\\\\\\\\\\\在光谱分布的意义上研究基质序列的光谱行为。 在光谱分布的意义上,Y_n(f)$是主要的反对角(或翻转矩阵),而$T_n(f)$是函数产生的Teplitz矩阵(f)美元,美元是Lebesgue Integable和真实的 Fourier 系数。这种研究还受到计算目的的驱动,目的是利用(预设的) MINRES 算法来解决相关的大型线性系统。在这里,我们对光谱研究的补充是,更多的结果是持有无线性和固定维度(或翻转矩阵) $n(f) 和 $Tegen(f) 美元、 美元(f) 美元) 和 美元和 egengenvelitz 矩阵(f) 等要素。除了快速线性解算算算算, 外,另一个目标是设计通过无矩阵算相关光谱谱的计算程序,, 其成本成本是直观分析的线性分析的线性分析显示当前不值的不值。