In business process landscapes, a common challenge is to provide the necessary computational resources to enact the single process steps. One well-known approach to solve this issue in a cost-efficient way is to use the notion of elasticity, i.e., to provide cloud-based computational resources in a rapid fashion and to enact the single process steps on these resources. Existing approaches to provide elastic processes are mostly based on Virtual Machines (VMs). Utilizing container technologies could enable a more fine-grained allocation of process steps to computational resources, leading to a better resource utilization and improved cost efficiency. In this paper, we propose an approach to optimize resource allocation for elastic processes by applying a four-fold auto-scaling approach. The main goal is to minimize the cost of process enactments by using containers. To this end, we formulate and implement a multi-objective optimization problem applying Mixed-Integer Linear Programming and use a transformation step to allocate software services to containers. We thoroughly evaluate the optimization problem and show that it can lead to significant cost savings while maintaining Service Lev
翻译:在业务流程景观中,一个共同的挑战是如何提供必要的计算资源,以颁布单一流程步骤; 以成本效益高的方式解决这一问题的一个众所周知的方法是使用弹性概念,即快速提供云基计算资源,并颁布关于这些资源的单一流程步骤; 提供弹性流程的现有方法大多以虚拟机器为基础; 利用集装箱技术可以更精细地分配计算资源的流程步骤,从而更好地利用资源和提高成本效率; 在本文件中,我们提出一个方法,通过采用四倍自动缩放办法,优化弹性流程资源分配; 主要目标是通过使用集装箱,最大限度地降低程序颁布成本; 为此,我们制定和实施一个多目标优化问题,采用混合Integer线性规划,并使用一个转换步骤,向集装箱分配软件服务; 我们彻底评估优化问题,并表明在维持服务前列夫的同时,可以节省大量费用。