We consider the setting in which a strong binary instrument is available for a binary treatment. The traditional LATE approach assumes the monotonicity condition stating that there are no defiers (or compliers). Since this condition is not always obvious, we investigate the sensitivity and testability of this condition. In particular, we focus on the question: does a slight violation of monotonicity lead to a small problem or a big problem? We find a phase transition for the monotonicity condition. On one of the boundary of the phase transition, it is easy to learn the sign of LATE and on the other side of the boundary, it is impossible to learn the sign of LATE. Unfortunately, the impossible side of the phase transition includes data-generating processes under which the proportion of defiers tends to zero. This boundary of phase transition is explicitly characterized in the case of binary outcomes. Outside a special case, it is impossible to test whether the data-generating process is on the nice side of the boundary. However, in the special case that the non-compliance is almost one-sided, such a test is possible. We also provide simple alternatives to monotonicity.


翻译:传统的LATE方法以单一状态为假设条件,说明没有违抗者(或遵守者),由于这一状况并非始终显而易见,我们调查这一状况的敏感性和可检验性。特别是,我们集中研究以下问题:轻微违反单一状态是否导致一个小问题或一个大问题?我们找到一个单一状态的阶段过渡。在阶段过渡的边界之一,很容易了解LATE和边界另一侧的标志,因此无法了解LATE的标志。不幸的是,在阶段过渡不可能的方面包括数据生成过程,在这种过程中,违抗者的比例倾向于为零。这种阶段过渡的界限在二元结果中有明确的特征。在特殊情况之外,我们无法检验数据生成过程是否在边界的好一边。然而,在特殊情况下,不合规几乎是单方面的,这种测试是可能的。我们还为单态提供了简单的替代方法。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
39+阅读 · 2020年9月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年5月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员