Imagine being able to ask questions to a black box model such as "Which adversarial examples exist?", "Does a specific attribute have a disproportionate effect on the model's prediction?" or "What kind of predictions could possibly be made for a partially described example?" This last question is particularly important if your partial description does not correspond to any observed example in your data, as it provides insight into how the model will extrapolate to unseen data. These capabilities would be extremely helpful as they would allow a user to better understand the model's behavior, particularly as it relates to issues such as robustness, fairness, and bias. In this paper, we propose such an approach for an ensemble of trees. Since, in general, this task is intractable we present a strategy that (1) can prune part of the input space given the question asked to simplify the problem; and (2) follows a divide and conquer approach that is incremental and can always return some answers and indicates which parts of the input domains are still uncertain. The usefulness of our approach is shown on a diverse set of use cases.
翻译:想象一下能够向黑盒模型提出问题, 比如“ 哪些对抗性实例存在? ” 、 “ 特定属性是否对模型的预测产生不成比例的影响? ” 或“ 对于部分描述的例子,可以作出什么样的预测?” 。 如果部分描述与数据中的任何观察到的例子不相符, 最后一个问题特别重要, 因为它提供了对模型如何将推断为无形数据的洞察力。 这些能力将极有帮助, 因为这些能力将使用户更好地了解模型的行为, 特别是它涉及强健、 公正和偏向等问题。 在本文中, 我们建议对树木组合采用这样一种方法。 因为一般来说, 这项任务很棘手, 我们提出的战略是:(1) 能够利用部分输入空间来简化问题; (2) 遵循一种分化和征服方法, 这种方法是渐进的, 并且总是可以返回一些答案, 并指出输入领域的哪些部分仍然是不确定的。 我们的方法的有用性表现在一系列不同的使用案例上。