项目名称: 氮掺杂多孔碳纳米材料的可控制备及其电容性能调控

项目编号: No.51472238

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 一般工业技术

项目作者: 马衍伟

作者单位: 中国科学院电工研究所

项目金额: 83万元

中文摘要: 随着环境和能源问题日益紧迫,对于二氧化碳的固定和转化以及开发新型储能器件具有十分重要的意义。本项目采用金属镁在氨气气氛中热还原二氧化碳可控制备氮掺杂多孔碳纳米材料,并阐明氮掺杂碳材料的生长机制。通过控制反应温度和反应时间,实现石墨烯、碳纳米管和空心碳纳米立方体等氮掺杂多孔碳纳米材料的宏量制备。开发氮掺杂多孔碳纳米材料在超级电容器电极材料方面的应用,获得氮掺杂多孔碳纳米材料的表面性质、比表面积、孔结构、导电性等对超级电容器性能的影响规律。充分利用氮掺杂多孔碳纳米材料的高导电率、高比表面积和层次孔结构为开发高性能的超级电容器奠定基础。氮掺杂多孔碳电极材料的能量密度最高到达120 Wh/kg,功率密度最高到达150 kW/kg。

中文关键词: 石墨烯;多孔碳材料;氮掺杂;二氧化碳转化;超级电容器

英文摘要: With the increasingly urgent environmental and energy issues, it has a very important significance for carbon dioxide fixation and conversion, as well as the development of new energy storage devices. This project focuses on the controllable preparation of Nitrogen-doped porous carbon nanomaterials through the thermal reduction of carbon dioxide by metal magnesium in ammonia. And the growth mechanism of the Nitrogen-doped carbon materials is clarified. By controlling the reaction temperature and reaction time, Nitrogen-doped porous carbon nanomaterials including graphene, carbon nanotube and hollow carbon nanocube can be obtained at a large scale, respectively. The Nitrogen-doped porous carbon nanomaterials are used as electrode materials for supercapacitor. Based on the experiments and analysis, the influence of surface properties, specific surface area, pore structure, conductivity and elemental doping on the electrochemical performances of the Nitrogen-doped porous carbon nanomaterials will be obtained. Finally, the Nitrogen-doped porous carbon nanomaterials with high conductivity, high specific surface area and hierarchical pore structure will be developed high-performance supercapacitors.The maximum energy density of Nitrogen-doped porous carbon nanomaterials is up to 120 Wh/kg, and the maximun power density is up to 150 kW/kg.

英文关键词: Graphene;Porous Carbon Materials;Nitrogen-Doped;Conversion of Carbon Dioxide;Supercapacitor

成为VIP会员查看完整内容
0

相关内容

《智能电网组件:功能和效益》白皮书
专知会员服务
26+阅读 · 2022年4月13日
《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
12+阅读 · 2022年3月23日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
最新《图神经网络实用指南》2020论文,28页pdf
专知会员服务
221+阅读 · 2020年10月17日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
33+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
AliCoCo: Alibaba E-commerce Cognitive Concept Net
Arxiv
13+阅读 · 2020年3月30日
小贴士
相关主题
相关VIP内容
《智能电网组件:功能和效益》白皮书
专知会员服务
26+阅读 · 2022年4月13日
《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
12+阅读 · 2022年3月23日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
最新《图神经网络实用指南》2020论文,28页pdf
专知会员服务
221+阅读 · 2020年10月17日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员