In recommender system, some feature directly affects whether an interaction would happen, making the happened interactions not necessarily indicate user preference. For instance, short videos are objectively easier to be finished even though the user does not like the video. We term such feature as confounding feature, and video length is a confounding feature in video recommendation. If we fit a model on such interaction data, just as done by most data-driven recommender systems, the model will be biased to recommend short videos more, and deviate from user actual requirement. This work formulates and addresses the problem from the causal perspective. Assuming there are some factors affecting both the confounding feature and other item features, e.g., the video creator, we find the confounding feature opens a backdoor path behind user item matching and introduces spurious correlation. To remove the effect of backdoor path, we propose a framework named Deconfounding Causal Recommendation (DCR), which performs intervened inference with do-calculus. Nevertheless, evaluating do calculus requires to sum over the prediction on all possible values of confounding feature, significantly increasing the time cost. To address the efficiency challenge, we further propose a mixture-of experts (MoE) model architecture, modeling each value of confounding feature with a separate expert module. Through this way, we retain the model expressiveness with few additional costs. We demonstrate DCR on the backbone model of neural factorization machine (NFM), showing that DCR leads to more accurate prediction of user preference with small inference time cost.
翻译:在推荐人系统中,有些特征直接影响到互动是否会发生,使得发生的互动不一定表示用户偏好。例如,短视频在客观上更容易完成,即使用户不喜欢视频。我们称其特征为混杂特征,视频长度是视频建议中的一个混杂特征。如果我们在这种互动数据上适合一个模型,就像大多数数据驱动建议系统所做的那样,模型会偏向于建议短视频,偏离用户的实际要求。这项工作从因果关系角度制定和解决问题。假设存在一些影响混结特征和其他项目特征的因素,例如视频创建者,我们发现混结特征打开了用户项目匹配背后的后门路径,并引入了虚假的关联性。为了消除后门路径的影响,我们建议了一个名为 " 淡化卡萨塔尔建议(DCR) " 的框架,这个框架用多量度模型进行干涉。尽管如此,从因果关系角度来制定并解决问题。如果存在某些因素,那么对精度的精度和精度的精度(例如,视频创建者)的精度和其他项目特征,例如,我们发现有些因素的精度特征,我们发现会打开后门的后门路径路径,打开一个后门路路路路路路径。为了去除成本,我们提出一个不同的分析模型,要用一个不同的模型,要用一个不同的模型来评估一个不同的模型,我们提出一个不同的模型。