Models of stochastic processes are widely used in almost all fields of science. Theory validation, parameter estimation, and prediction all require model calibration and statistical inference using data. However, data are almost always incomplete observations of reality. This leads to a great challenge for statistical inference because the likelihood function will be intractable for almost all partially observed stochastic processes. This renders many statistical methods, especially within a Bayesian framework, impossible to implement. Therefore, computationally expensive likelihood-free approaches are applied that replace likelihood evaluations with realisations of the model and observation process. For accurate inference, however, likelihood-free techniques may require millions of expensive stochastic simulations. To address this challenge, we develop a new method based on recent advances in multilevel and multifidelity. Our approach combines the multilevel Monte Carlo telescoping summation, applied to a sequence of approximate Bayesian posterior targets, with a multifidelity rejection sampler to minimise the number of computationally expensive exact simulations required for accurate inference. We present the derivation of our new algorithm for likelihood-free Bayesian inference, discuss practical implementation details, and demonstrate substantial performance improvements. Using examples from systems biology, we demonstrate improvements of more than two orders of magnitude over standard rejection sampling techniques. Our approach is generally applicable to accelerate other sampling schemes, such as sequential Monte Carlo, to enable feasible Bayesian analysis for realistic practical applications in physics, chemistry, biology, epidemiology, ecology and economics.


翻译:几乎所有科学领域都广泛使用光学过程模型。理论验证、参数估计和预测都要求使用数据进行模型校准和统计推断。然而,数据几乎总是不完全的。这给统计推断带来巨大挑战,因为几乎所有部分观测的光学过程都难以找到可能的功能。这使得许多统计方法,特别是在巴耶斯框架范围内,无法实施。因此,采用成本昂贵的无可能性方法,用模型和观察过程的实现来取代概率评价。然而,准确的推断,无可能性技术可能需要数百万次昂贵的随机模拟。为了应对这一挑战,我们根据最近多层次和多信仰的进展,开发了一种新的方法。我们的方法将多层次的蒙特卡洛远程校准校准校准和多层次的波亚远目标序列应用起来,并使用多层次拒绝抽样抽样抽样抽样样本,以尽可能减少实际的、成本昂贵的准确模拟。我们用新的测算算方法来进行无风险的Bayes测序应用。我们从实际的精确的测算方法中推算出新的测算方法,比实际的测序要更精确的精确的精确性,我们从实际的测算来展示了实际的精确的精确的精确性分析。我们从实际的测算方法,从实际的精确的测序的测测测测测测测算方法,从实际的精确的测测测测测方法到比我们更的测测测测测测测测测得的进度,从实际的比的系统,从实际的精确的比的比的测的测的进度,从比的测的测得的比的系统来,更的进度,从实际的精确性能的测到比我们的测得的测得的测得的测得的测得的测得的测得的测得的测得的测得的测得的测得的测得的测得的测得的精度,用到比得的比得的进度,从比得的比得的比得的比得的比得的比得的比的比得的比得的测得的测得的比得的比得得得的比得得得的比的比。

0
下载
关闭预览

相关内容

专知会员服务
48+阅读 · 2021年4月24日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
4+阅读 · 2017年7月7日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年12月27日
Arxiv
10+阅读 · 2021年2月18日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
4+阅读 · 2017年7月7日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员