Simulating quantum many-body dynamics on classical computers is a challenging problem due to the exponential growth of the Hilbert space. Artificial neural networks have recently been introduced as a new tool to approximate quantum-many body states. We benchmark the variational power of different shallow and deep neural autoregressive quantum states to simulate global quench dynamics of a non-integrable quantum Ising chain. We find that the number of parameters required to represent the quantum state at a given accuracy increases exponentially in time. The growth rate is only slightly affected by the network architecture over a wide range of different design choices: shallow and deep networks, small and large filter sizes, dilated and normal convolutions, with and without shortcut connections.
翻译:由于Hilbert空间的指数增长,模拟古典计算机上的量子多体动态是一个具有挑战性的问题。最近,人工神经网络被引入了近似量子多体状态的新工具。我们测量了不同浅度和深度神经自动递减量国家的变异力,以模拟非可溶性量子Ising链的全球阵列动态。我们发现,以特定精确度代表量子状态所需的参数数量在时间上指数增长。在一系列不同的设计选择中,网络结构对增长率的影响很小:浅度和深度网络、大小的过滤器大小、扩张式和正常的演进,以及没有捷径连接。