This work studies the joint rain and haze removal problem. In real-life scenarios, rain and haze, two often co-occurring common weather phenomena, can greatly degrade the clarity and quality of the scene images, leading to a performance drop in the visual applications, such as autonomous driving. However, jointly removing the rain and haze in scene images is ill-posed and challenging, where the existence of haze and rain and the change of atmosphere light, can both degrade the scene information. Current methods focus on the contamination removal part, thus ignoring the restoration of the scene information affected by the change of atmospheric light. We propose a novel deep neural network, named Asymmetric Dual-decoder U-Net (ADU-Net), to address the aforementioned challenge. The ADU-Net produces both the contamination residual and the scene residual to efficiently remove the rain and haze while preserving the fidelity of the scene information. Extensive experiments show our work outperforms the existing state-of-the-art methods by a considerable margin in both synthetic data and real-world data benchmarks, including RainCityscapes, BID Rain, and SPA-Data. For instance, we improve the state-of-the-art PSNR value by 2.26/4.57 on the RainCityscapes/SPA-Data, respectively. Codes will be made available freely to the research community.
翻译:这项工作研究的是雨和烟雾的清除问题。在现实生活中,降雨和烟雾这两个经常同时发生的常见天气现象可能大大降低现场图像的清晰度和质量,导致视觉应用(如自主驾驶)的性能下降。然而,联合去除现场图像中的雨和烟雾是不善的和具有挑战性的,因为烟雾和雨水的存在以及大气光的变化都可能降低现场信息。目前的方法侧重于污染清除部分,从而忽视受大气光变化影响的现场信息的恢复。我们建议建立一个新型的深神经网络,名为Asymric-decoder U-Net(ADU-Net(ADU-Net)),以应对上述挑战。ADU-Net产生污染残留物和现场残留物,以便有效地清除雨和风雾,同时保持现场信息的准确性。广泛的实验表明,我们的工作在合成数据和真实世界数据基准(包括RainCitys、BID-decoder U-Net(BID-Net-Net-Net))中相当一部分的合成数据和数据基准(包括RainC-Rinal-Stal-D)社区,将改进现有的PA-SAR-SAR-C-C-C-C-C-C-C-C-C-Sparal-C-C-Sparental-deal-deal-deal-deal-deal-s-Sal-Sal-Sal-S-S-S-S-Sal-s-s-s-S-S-S-S-S-S-Sal-S-S-S-S-S-Sal-st-Sal-S-s-s-Sal-S-S-S-S-s-S-s-s-s-s-s-s-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-Sparal-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-Sal-Sal-S-S-Sal-s-s-s-Sal-s-