We consider the problem of counting the number of copies of a fixed graph $H$ within an input graph $G$. This is one of the most well-studied algorithmic graph problems, with many theoretical and practical applications. We focus on solving this problem when the input $G$ has bounded degeneracy. This is a rich family of graphs, containing all graphs without a fixed minor (e.g. planar graphs), as well as graphs generated by various random processes (e.g. preferential attachment graphs). We say that $H$ is easy if there is a linear-time algorithm for counting the number of copies of $H$ in an input $G$ of bounded degeneracy. A seminal result of Chiba and Nishizeki from '85 states that every $H$ on at most 4 vertices is easy. Bera, Pashanasangi, and Seshadhri recently extended this to all $H$ on 5 vertices, and further proved that for every $k > 5$ there is a $k$-vertex $H$ which is not easy. They left open the natural problem of characterizing all easy graphs $H$. Bressan has recently introduced a framework for counting subgraphs in degenerate graphs, from which one can extract a sufficient condition for a graph $H$ to be easy. Here we show that this sufficient condition is also necessary, thus fully answering the Bera--Pashanasangi--Seshadhri problem. We further resolve two closely related problems; namely characterizing the graphs that are easy with respect to counting induced copies, and with respect to counting homomorphisms.


翻译:我们考虑的是固定图形($H美元)的复制件数在输入图形($G美元)中的计算问题。这是在很多理论和实践应用中研究最周密的算法图表问题之一。当输入($G$)已经捆绑了退化性时,我们专注于解决这个问题。这是一个丰富的图表组合,包含所有没有固定微小的图表(如平面图)的图表,以及各种随机流程(如优惠附件图)产生的图表(如优惠附件图),我们说,如果在输入(a)中计算美元($H)的复制件的直线时间算法是容易的。当输入($G$)的平面图中,我们关注的是这个问题。85年的Chiba和Nishizizeki的原始结果显示,每4个脊椎上的每一美元都很容易。Bera、Pashanasanggi和Seshadhari最近将这个图状图状扩展为5H美元,并进一步证明每美元计算5美元,我们需要计算一个硬面值的直径($-$)的直径,而这个图状图状图状也很难理解。最近使Baromama 的直图状图上的一个问题变得足够。

0
下载
关闭预览

相关内容

【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
五个精彩实用的自然语言处理资源
机器学习研究会
6+阅读 · 2018年2月23日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Improved Compression of the Okamura-Seymour Metric
Arxiv
0+阅读 · 2022年2月10日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
五个精彩实用的自然语言处理资源
机器学习研究会
6+阅读 · 2018年2月23日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员