In this paper, we demonstrate that a new measure of evidence we developed called the Dempster-Shafer p-value which allow for insights and interpretations which retain most of the structure of the p-value while covering for some of the disadvantages that traditional p- values face. Moreover, we show through classical large-sample bounds and simulations that there exists a close connection between our form of DS hypothesis testing and the classical frequentist testing paradigm. We also demonstrate how our approach gives unique insights into the dimensionality of a hypothesis test, as well as models the effects of adversarial attacks on multinomial data. Finally, we demonstrate how these insights can be used to analyze text data for public health through an analysis of the Population Health Metrics Research Consortium dataset for verbal autopsies.
翻译:暂无翻译