How social networks influence human behavior has been an interesting topic in applied research. Existing methods often utilized scale-level behavioral data to estimate the influence of a social network on human behavior. This study proposes a novel approach to studying social influence that utilizes item-level behavioral measures. Under the latent space modeling framework, we integrate the two interaction maps for respondents' social network data and item-level behavior measures. The interaction map visualizes the association between the latent homophily of the respondents and their behaviors measured at the item level in a low-dimensional latent space, revealing the potential, differential social influence effects across specific behaviors measured at the item level. We also measure overall social influence as the impact of the interaction map configuration contributed by the social network data on the behavior data. The performance and properties of the proposed approach are evaluated via simulation studies. We apply the proposed model to an empirical dataset to demonstrate how the students' friendship network influences their participation in school activities.
翻译:在应用研究中,社会网络如何影响人类行为是一个有趣的话题。现有方法经常利用规模级行为数据来估计社会网络对人类行为的影响。本研究提出了一种新颖的方法来研究利用项目级行为措施的社会影响。在潜在空间模型框架下,我们整合了两个互动图,用于答卷人的社会网络数据和项目级行为措施。互动图将答卷人潜伏的同质关系和在低维潜层项目一级测量的行为联系起来,揭示了在项目一级测量的具体行为的潜在、差异社会影响。我们还将总体社会影响作为社会网络数据为行为数据提供的互动地图组合的影响加以衡量。通过模拟研究对拟议方法的性能和性质进行评估。我们将拟议的模型应用于实验数据集,以展示学生友谊网络如何影响他们参与学校活动。</s>