In this correspondence, we study the physical layer security in a stochastic unmanned aerial vehicles (UAVs) network from a network-wide perspective, where the locations of UAVs are modeled as a Mat$\acute{\text{e}}$rn hard-core point process (MHCPP) to characterize the minimum safety distance between UAVs, and the locations of users and eavesdroppers are modeled as a Poisson cluster process and a Poisson point process, respectively. UAVs adopt zero-forcing precoding to serve multiple ground users and emit artificial noise to combat eavesdropping. We derive the approximations for the coverage probability and secrecy probability of a typical user, with which we derive the secrecy throughput of the whole network. Numerical results show the analytical results can well approximate the simulation results. Impacts of parameters on the secrecy performance are shown.
翻译:在此函文中,我们从整个网络的角度研究无人驾驶飞行器(无人驾驶飞行器)网络的物理层安全。 无人驾驶飞行器的所在地模拟为Mat$\acutte text{e ⁇ $n 硬点过程(MHCP),以描述无人驾驶飞行器之间的最低安全距离,用户和窃听器的位置分别模拟为Poisson集群过程和Poisson点过程。无人驾驶飞行器采用零强制预译,为多个地面用户服务,并释放人造噪音,以打击窃听。我们得出典型用户覆盖面概率和保密概率的近似值,以此得出整个网络的保密量。数字结果显示分析结果可以非常接近模拟结果。显示对保密性能参数的影响。