I construct and justify confidence intervals for longitudinal causal parameters estimated with machine learning. Longitudinal parameters include long term, dynamic, and mediated effects. I provide a nonasymptotic theorem for any longitudinal causal parameter estimated with any machine learning algorithm that satisfies a few simple, interpretable conditions. The main result encompasses local parameters defined for specific demographics as well as proximal parameters defined in the presence of unobserved confounding. Formally, I prove consistency, Gaussian approximation, and semiparametric efficiency. The rate of convergence is $n^{-1/2}$ for global parameters, and it degrades gracefully for local parameters. I articulate a simple set of conditions to translate mean square rates into statistical inference. A key feature of the main result is a new multiple robustness to ill posedness for proximal causal inference in longitudinal settings.
翻译:我为通过机器学习估计的纵向因果参数构建并解释信任度间隔。 纵向参数包括长期、 动态和介质效应。 我为任何经机器学习算法估算的纵向因果参数提供了不设防的理论, 该算法满足了几个简单的、可解释的条件。 主要结果包括为特定人口群定义的当地参数以及在没有观察到的混凝土情况下界定的准参数。 形式上, 我证明了一致性、 高斯近似值 和半参数效率。 全球参数的趋同率是 $ ⁇ -1/ / } 美元, 它优雅地降低本地参数。 我为将平均平方速率转换为统计推论, 我给出了一套简单的条件。 主要结果的一个关键特征是, 一种新的多维度, 以不正确的方式呈现出在纵向环境中的准因果推论。