Optical flow is a method aimed at predicting the movement velocity of any pixel in the image and is used in medicine and biology to estimate flow of particles in organs or organelles. However, a precise optical flow measurement requires images taken at high speed and low exposure time, which induces phototoxicity due to the increase in illumination power. We are looking here to estimate the three-dimensional movement vector field of moving out-of-plane particles using normal light conditions and a standard microscope camera. We present a method to predict, from a single textured wide-field microscopy image, the movement of out-of-plane particles using the local characteristics of the motion blur. We estimated the velocity vector field from the local estimation of the blur model parameters using an deep neural network and achieved a prediction with a regression coefficient of 0.92 between the ground truth simulated vector field and the output of the network. This method could enable microscopists to gain insights about the dynamic properties of samples without the need for high-speed cameras or high-intensity light exposure.
翻译:光学流是一种旨在预测图像中任何像素运动速度的方法,用于医学和生物学,以估计器官或器官中的粒子流动情况;然而,精确的光学流测量要求以高速度和低接触时间拍摄图像,这种图像会因照明功率增加而产生光毒性。我们在这里研究的是利用正常光线条件和标准的显微镜相机来估计移动平流颗粒的三维移动矢量领域。我们提出了一个方法,从单一的纹理宽场显微镜图像中,用运动模糊的局部特征来预测平面粒子的移动情况。我们利用深神经网络从局部估计模糊模型参数的速度矢量场,并用0.92的回归系数对地面模拟矢量场和网络输出进行了预测。这种方法可以使微型摄像师了解样品的动态特性,而不需要高速摄像头或高密度光照射。