Low-quality listings and bad actor behavior in online retail websites threatens e-commerce business as these result in sub-optimal buying experience and erode customer trust. When a new listing is created, how to tell it has good-quality? Is the method effective, fast, and scalable? Previous approaches often have three limitations/challenges: (1) unable to handle cold start problems where new sellers/listings lack sufficient selling histories. (2) inability of scoring hundreds of millions of listings at scale, or compromise performance for scalability. (3) has space challenges from large-scale graph with giant e-commerce business size. To overcome these limitations/challenges, we proposed ColdGuess, an inductive graph-based risk predictor built upon a heterogeneous seller product graph, which effectively identifies risky seller/product/listings at scale. ColdGuess tackles the large-scale graph by consolidated nodes, and addresses the cold start problems using homogeneous influence1. The evaluation on real data demonstrates that ColdGuess has stable performance as the number of unknown features increases. It outperforms the lightgbm2 by up to 34 pcp ROC-AUC in a cold start case when a new seller sells a new product . The resulting system, ColdGuess, is effective, adaptable to changing risky seller behavior, and is already in production


翻译:在线零售网站的低质量列名和不良行为威胁到电子商务业务,因为这样会导致低劣的购买经验,并削弱客户信任。当新列名创建时,如何告诉它质量良好?方法是否有效、快速和可推广?以往的做法往往有三个限制/挑战:(1) 无法处理新销售者/名单缺乏足够销售历史的冷启动问题。(2) 无法在规模上赢得数亿列名或降低可缩放性能时处理冷启动问题。(3) 具有巨大电子商务规模的大型图表在空间方面遇到挑战。为克服这些限制/挑战,我们提议ColdGuess,一个基于直观图的风险预测器,建在多样化的卖方产品图上,该图能有效识别风险的卖方/产品/清单规模。ColdGuess通过合并节点处理大型的启动问题,并利用同质影响解决冷启动问题。1 对真实数据的评估表明,随着未知特征数量的增加,ColdGuess的性能稳定了稳定运行。为了克服这些限制/挑战,我们建议,ColdGuess,一个基于直方图的风险预测的风险预测的预测器建于34个变冷式产品,在新的销售系统中,而导致的冷质变换后的风险行为是一个新的产品。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月14日
Arxiv
29+阅读 · 2018年4月6日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员