Instructors are increasingly incorporating student-centered learning techniques in their classrooms to improve learning outcomes. In addition to lecture, these class sessions involve forms of individual and group work, and greater rates of student-instructor interaction. Quantifying classroom activity is a key element of accelerating the evaluation and refinement of innovative teaching practices, but manual annotation does not scale. In this manuscript, we present advances to the young application area of automatic classroom activity detection from audio. Using a university classroom corpus with nine activity labels (e.g., "lecture," "group work," "student question"), we propose and evaluate deep fully connected, convolutional, and recurrent neural network architectures, comparing the performance of mel-filterbank, OpenSmile, and self-supervised acoustic features. We compare 9-way classification performance with 5-way and 4-way simplifications of the task and assess two types of generalization: (1) new class sessions from previously seen instructors, and (2) previously unseen instructors. We obtain strong results on the new fine-grained task and state-of-the-art on the 4-way task: our best model obtains frame-level error rates of 6.2%, 7.7% and 28.0% when generalizing to unseen instructors for the 4-way, 5-way, and 9-way classification tasks, respectively (relative reductions of 35.4%, 48.3% and 21.6% over a strong baseline). When estimating the aggregate time spent on classroom activities, our average root mean squared error is 1.64 minutes per class session, a 54.9% relative reduction over the baseline.


翻译:教官们越来越多地将以学生为中心的学习技巧纳入教室,以改善学习成果。除了讲课外,这些课堂课程还涉及个人和团体工作的形式,以及学生-教官互动率的提高。量化课堂活动是加速评价和完善创新教学做法的一个关键要素,但人工注解并不规模。在本手稿中,我们介绍了从听觉中自动检测课堂活动的年轻应用领域的进展。使用9个活动标签的大学课堂设施(例如“授课”、“团体工作”、“学生问题”),我们提议和评估深度连接、动态和经常性的神经网络结构,比较Mel-filterbank、OpenSmile和自超音频声学功能的绩效。我们比较了9个方向的分类绩效与任务5个方向和4个方向的简化。我们从先前看到的指导师那里新开的班级课程,以及之前看不见的教官。我们在新的精细任务和状态方面获得了强有力的成果。 我们建议并评估了4:8.0的课堂网络结构模型, 超过48 % 平均时间段的基线, 和平均方向的排序为4:我们的最佳模型为4:我们的平均比例为4:超过0.8 % 的基线, 的基线为0.5级的模型为0.5级的缩缩缩缩为0.1 。

0
下载
关闭预览

相关内容

计算机视觉最佳实践、代码示例和相关文档
专知会员服务
19+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
“CVPR 2020 接受论文列表 1470篇论文都在这了
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Arxiv
7+阅读 · 2018年12月5日
Arxiv
5+阅读 · 2018年5月16日
VIP会员
相关VIP内容
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
19+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Top
微信扫码咨询专知VIP会员