Online ride-hailing services have become a prevalent transportation system across the world. In this paper, we study a challenging problem of how to direct vacant taxis around a city such that supplies and demands can be balanced in online ride-hailing services. We design a new reward scheme that considers multiple performance metrics of online ride-hailing services. We also propose a novel deep reinforcement learning method named Deep-Q-Network with Action Mask (AM-DQN) masking off unnecessary actions in various locations such that agents can learn much faster and more efficiently. We conduct extensive experiments using a city-scale dataset from Chicago. Several popular heuristic and learning methods are also implemented as baselines for comparison. The results of the experiments show that the AM-DQN attains the best performances of all methods with respect to average failure rate, average waiting time for customers, and average idle search time for vacant taxis.


翻译:在线乘车服务已成为全世界通行的交通系统。在本文中,我们研究了如何在城市周围直接空置出租车,使在线乘车服务的供应和需求能够平衡的难题。我们设计了一个新的奖励计划,考虑在线乘车服务的多重性能指标。我们还提出了名为“深Q网络与行动面具(AM-DQN)”的新型强化学习方法,以掩盖不同地点的不必要行动,使代理人能够更快和更有效地学习。我们利用芝加哥的城市规模数据集进行了广泛的实验。一些流行的超常和学习方法也被用作比较基线。实验结果显示,AM-DQN在平均失灵率、客户平均等待时间以及空出租车的平均闲搜索时间方面达到了所有方法的最佳性能。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
9+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Reinforcement Learning with Almost Sure Constraints
Arxiv
0+阅读 · 2023年2月13日
Arxiv
21+阅读 · 2022年11月8日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
57+阅读 · 2019年7月31日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
9+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员